

Board Subject: Mathematics		Weight	No. Of Items	Level of Difficulty						
COMPETENCY		20%	100	Easy (In	troductory)	Moderate (Enabling)		Difficult (Demonstrative)		
COURSE	TOPICS			К	С	Α	Α	S	E	
	Torics			Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation	
1.0 Differential Calculus		3%	15	1	3	8	3			
	Functions, Continuity, and Limits	0.4	2	1	1					
PO-a. Apply knowledge of mathematics	Derivatives and Its Applications	0.6	3		1	2				
and science to solve complex engineering	Higher-Order Derivatives	0.6	3			2	1			
problems	Parametric Equations	0.8	4		1	2	1			
	Partial Differentiation	0.6	3			2	1			
2.0 Integral Calculus		3%	15	2	4	6	3			
	Integration Concepts/Formulas	0.4	2	1	1					
PO-a. Apply knowledge of mathematics	Integration Techniques	0.8	4		1	1	2			
and science to solve complex engineering	Improper Integrals	0.6	3		1	1	1			
problems	Application of Integral	0.8	4	1	1	2				
	Multiple Integration and its applications	0.4	2			2				
3.0 Differential Equation		3%	15	1	2	10	2			
	First-Order, First-Degree ODE and its									
PO-a. Apply knowledge of mathematics	Applications	1.2	6	1	1	4				
and science to solve complex engineering	Higher-Order ODE and its Application	0.8	4		1	2	1			
problems	Laplace Transforms, Inverses, and its									
	applications	1	5			4	1			
4.0 Advanced Engineering Mathematics for ECE		3%	15	0	0	10	5			
PO-a. Apply knowledge of mathematics	Complex Numbers and its Applications	0.4	2			2				
and science to solve complex engineering	Series and Transforms	0.8	4			2	2			
problems	Ordinary and Partial Differential Equations	0.6	3			2	1			

	Simultaneous linear and non-linear							
	equations	0.6	3			2	1	
	Numerical Differentiation, Integration and							
	Optimization	0.6	3			2	1	
5.0 Engineering Data Analysis		3%	15	2	3	6	4	
	Obtaining Data	0.4	2	1	1			
	Statistical Sampling, distribution, and							
PO-a. Apply knowledge of mathematics	intervals		5			3	2	
and science to solve complex engineering	Test of Hypothesis	0.4	2	1	1			
prodetto	Regression and Correlation	0.4	2		1	1		
	Design of experiments	0.8	4			2	2	
6.0 Electromagnetic	(Shares with ELECTRONICS)	1.8%	9	3	1		5	
PO-a. Apply knowledge of mathematics and science to solve complex engineering	Vector Analysis	0.6	3	1			2	
	Directional derivative, gradient,							
	divergence, curl	0.6	3	1			2	
	Integral Theorems, Green's Lemma,							
	Divergence Theorem							
	and Strokes' Theorem	0.6	3	1	1		1	
PO-e. Identify, formulate, and solve complex engineering problems	(c/o ELEX)							
7.0 Signals, Spectra & Signal Processing	(Shares with EST)	1.6%	8	2	3		3	
PO-b. Design and conduct experiments, as well as to analyze and interpret data	N/A							
DO a Identify formulate and solve	Z-Transforms	0.4	2		1		1	
complex engineering problems	Convolution	0.6	3	1	1		1	
complex engineering problems	Correlation	0.6	3	1	1		1	
8.0 Feedback and Control Systems	(Shares with ELEX)	1.6%	8		3		5	
PO-b. Design and conduct experiments, as	N/A							
well as to analyze and interpret data								
	Pole and zero determination	0.4	2		1		1	

PO-e. Identify, formulate, and solve	Transient response	0.6	3		1		2	
complex engineering problems								
	Block diagram and signal flow	0.6	3		1		2	
TOTAL		20%	100	11	19	40	30	

Scope:
1.0 Differential Calculus
1.1 Functions, Continuity, Limits
1.2 Derivatives and Its Applications
1.3 Higher-Order Derivatives
1.4 Parametric Equations
1.5 Partial Differentiation
2.0 Integral Calculus
2.1 Integration Concepts/Formulas
2.2 Integration Techniques
2.3 Improper Integrals
2.4 Application of Integral
2.5Multiple Integration and its application
3.0 Differential Equation
3.1 First-Order, First-Degree ODE and its Application
3.2 Higher-Order ODE and its Application
3.3 Laplace Transforms, Inverses, and its applications
4.0 Advanced Engineering Mathematics for ECE

4.1 Complex Numbers and its Applications
4.2 Series and Transforms (Power Series, Bessel, Legendre,
Fourier Series and Applications; Fourier Transforms,
Inverses, and applications
4.3 Partial Differential Equations
4.4 Simultaneous linear and non-linear equations
4.5 Numerical Differentiation, Integration and Optimization
5.0 Engineering Data Analysis
5.1 Obtaining Data
5.2 Statistical Sampling, distribution, and intervals
(Probability Distributions, Sampling Distributions and
Point Estimation of parameters, Statistical Intervals)
5.3 Test of Hypothesis
5.4 Regression and Correlation
5.5 Design of Experiments
6.0 Electromagnetics
6.1 Vector Analysis (algebra of vectors, vector product,
calculus of vectors and vector identities, derivative of a
vector functions)
6.2 Directional derivative, gradient, divergence, curl
6.3 Integral Theorems, Green's Lemma, Divergence
Theorem and Strokes' Theorem
7.0 Signals, Spectra & Signal Processing
7.1 Z-Transforms
7.2 Convolution
7.3 Correlation

1

Professional Regulation Commission

8.0 Feedback and Control Systems	
8.1 Pole and zero determination	
8.2 Transient response	
8.3 Block diagram and signal flow	

Board Subject: General Engineering and Applied Sciences		Weight	No. Of Items	Level of Difficulty						
COMPETENCY		20%	100	Introductory		Enabling		Demons	trative	
Course (Subject	TODICS			К	С	Α	Α	S	E	
Course/ Subject	TOPICS			Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation	
1.0 Chemistry for Engineers		2%	10	6	4					
	Energy	0.6	3	2	1					
PO-a. Apply knowledge of mathematics	Chemistry of Engg Materials	0.6	3	2	1					
and science to solve complex engineering	Chemistry of the Nano materials	0.4	2	1	1					
problems	Chemistry of the Environment, and Special									
	Topics specific to the field of expertise	0.4	2	1	1					
2.0 Physics for Engineers		3%	15	10	5					
	Work, Energy and Power, Impulse and Momentum, Kinematics, Dynamics									
	Rotation	1	5	3	2					
PO-a. Apply knowledge of mathematics	Dynamic of Rotation, Elasticity,									
and science to solve complex engineering	Oscillations/Waves	0.8	4	2	2					
problems	Fluids, Heat Transfer	0.4	2	2						
	Electrostatics, Electricity, Magnetism,									
	Optics	0.8	4	3	1					
PO-b. Design and conduct experiments, as										
well as to analyze and interpret data	N/A									
3.0 Engineering Economics		1.2%	6	3	3					
	Engg Economics Introduction Terms	0.2	1	1						
PO-I. apply knowledge of engineering and	Money-Time Relationship and									
leader in a team to manage projects and in	Equivalence, and Basic Economy Study			_						
multidisciplinary environments	Methods	0.4	2	2						
	Decisions Under Certainty	0.2	1		1					

	Decisions Recognizing Risk, and Decision								
	Admitting Uncertainty	0.4	2		2				
4.0 Engineering Management		1.8%	9						
	Evolution of Mgt Theory, and								
DO I such have dedee of easing and	Management and Its Function	0.4	2	2					
PO-I. apply knowledge of engineering and	Planning, Leading, Organizing and								
loader in a team, to manage prejects and in	Controlling	0.8	4	4					
multidisciplinary environments	Managing Product and Service Operations	0.2	1	1					
	Managing the Marketing Function, and								
	Managing the Finance Function	0.4	2		2				
5.0 Technopreneurship 101		2%	10			5	3	2	
	Technopreneurship Introduction,								
	Customers, and Value Proposition / Ethics,								
	social responsibility, and Globalization	0.6	3			2		1	
PO-I. apply knowledge of engineering and	Market Identification and Analysis, and								
management principles as a member and	Creating Competitive Advantage	0.4	2			1	1		
leader in a team, to manage projects and in	Business Models, and Introduction to								
multidisciplinary environments	Intellectual Property	0.4	2			1	1		
	Execution and Business Plan, Financial								
	Analysis, Accounting Basics, and Raising								
	Capital	0.6	3				2	1	
6.0 Physics 2		2%	10			6	3	1	
	Thermodynamics, Condensed Matter,								
PO-a. Apply knowledge of mathematics	Atomic/Nuclear, and Condensed Matter	0.8	4			2	1	1	
and science to solve complex engineering	Electricity, Magnetism, and EM Induction	0.6	3			3	0	0	
problems	Inductance/AC	0.4	2			1	1		
	Optics	0.2	1				1		
7.0 Materials Science and Engineering		1.6%	8	6	2				
	Review Fundamentals, Modern material's								
	atomic structure and interatomic bonding,	0.4	2	2					

	The structure of crystalline materials, and								
	Crystalline and non-crystalline materials								
	Economic, environmental, and societal								
	issues in Materials science and Engg,								
	Imperfections in solid, Diffusion in solids,								
BO a Apply knowledge of mathematics	Mechanical properties of metals, and								
and science to solve complex engineering	Application and Processing of metal alloys	0.4	2	2					
and science to solve complex engineering	Structure and properties of ceramics,								
problems	Applications and processing of ceramics,								
	Polymer textures and properties,								
	Applications and processing of polymers,								
	and Composites	0.4	2	2					
	Electrical properties, Dielectric behavior,								
	Magnetic Optical, and Thermal properties	0.4	2	1	1				
8.0 Computer Programming		2%	10	7	3				
	Introduction to Object Oriented								
	Programming and UML, and Object-								
DO In the techniques, shills, and medani	Oriented Analysis and Design	0.8	4	4					
PO-k. Use techniques, skills, and modern	Programming Language Fundamentals,								
engineering tools necessary for	and Advanced Programming Language								
engineering practice	Fundamentals	0.6	3	1	2				
	Exception Handling	0.2	1	1					
	Graphical User Interface Programming	0.4	2	1	1				
9.0 Environment Science and Engineering		2%	10			6	2	2	
	Nature and Ecology, and Natural Systems								
PO-a. Apply knowledge of mathematics and science to solve complex engineering problems	and Resources	0.8	4			4			
	Environmental Concerns and Crisis	0.4	2			2			
	Environmental Impact Assessment	0.4	2				2		
	Sustainable Development	0.4	2					2	

TABLE OF SPECIFICATIONS

10.0 ECE Laws, Contracts, Ethics,									
Standards & Safety		2%	10			4	3	3	
	Fundamentals of the Laws, Obligations								
	and Contracts	0.4	2			1		1	
	Pledge of ECE & CSC Guidelines, The Board								
PO-f. Apply professional and ethical	Examination, and Regulating the ECE								
responsibility	Procession (PRC)	0.6	3			3			
	Practicing the ECE Profession	0.2	1				1		
	Other ECE Related Statutes, Safety								
	Standards, and PEC Codes	0.4	4				2	2	
11.0 CAD		0.4%	2						
PO-k. Use techniques, skills, and modern engineering tools necessary for engineering practice.	Introduction to CAD Software and its environment, Snapping and construction elements, Dimensioning, Plotting and inputting of images	0.4	2	1	1				
TOTAL		20%	100	40	20	21	11	8	

Scope

1.0 Chemistry for Engineers

Energy

Chemistry of Engg Materials

Chemistry of the Nano materials

Chemistry of the Envi

Special Topics specific to the field of expertise

TABLE OF SPECIFICATIONS

2.0 Physics for Engineers

Work, Energy and Power

Impulse and Momentum

Kinematics

Dynamics

Rotation

Dynamic of Rotation

Elasticity

Oscillations/Waves

Fluids

Heat Transfer

Waves

Electrostatics

Electricity

Magnetism

Optics

3.0 Engineering Economics

Engg Economics Introduction Terms

Money-Time Relationship and Equivalence

Basic Economy Study Methods

Decisions Under Certainty

Decisions Recognizing Risk

Decision Admitting Uncertainty

TABLE OF SPECIFICATIONS

4.0 Engineering Management

Evolution of Mgt Theory Management and Its Function Planning Leading Organizing Controlling Managing Product and Service Operations Managing the Marketing Function Managing the Finance Function

5.0 Technopreneurship 101

Technopreneurship Introduction/ Ethics, social responsibility, and Globalization Customers Value Proposition Market Identification and Analysis Creating Competitive Advantage Business Models Introduction to Intellectual Property Execution and Business Plan Financial Analysis and Accounting Basics Raising Capital Ethics, social responsibility, and Globalization

6.0 Physics 2

Thermodynamics Electricity

Magnetism
EM Induction -
Inductance/ Condensed Matter
AC
Optics
Atomic/nuclear
Condensed Matter
7.0 Materials Science and Engineering
Review Fundamentals
Modern material's atomic structure and interatomic bonding
The structure of crystalline materials
Crystalline and non-crystalline materials/ Economic, environmental, and
societal issues in Materials science and Engg
Imperfections in solid
Diffusion in solids
Mechanical properties of metals
Application and Processing of metal alloys
Structure and properties of ceramics
Applications and processing of ceramics
Polymer textures and properties
Applications and processing of polymers
Composites
Electrical properties
Dielectric behavior
Magnetic properties
Optical properties
Thermal properties

TABLE OF SPECIFICATIONS

Economic, environmental, and societal issues in Materials science and Engg

8.0 Computer Programming

Introduction to Object Oriented Programming and UML

Object Oriented Analysis and Design

Programming Language Fundamentals

Advanced Programming Language Fundamentals

Exception Handling

Graphical User Interface Programming

9.0 Environment Science and Engineering

Nature and Ecology Natural Systems and Resources Environmental Concerns and Crises Environmental Impact Assessment Sustainable Development

10. ECE Laws, Contracts, Ethics, Standards & Safety

Fundamentals of the Laws, Obligations and Contracts Pledge of ECE & CSC Guidelines The Board Examination Regulating the ECE Procession (PRC) Practicing the ECE Profession Other ECE Related Statutes

TABLE OF SPECIFICATIONS

Safety Standards PEC Codes

11. CAD

Introduction to CAD Software and its environment Snapping and construction elements Dimensioning, Plotting and inputting of images

Board Subject: ELECTRONICS ENGINEERING		Weight	No. Of Items	Level of Difficulty						
COMPETENCY		30%	100	Easy (Ir	ntroductory)	Moderate (Enabling) Difficult (Demonstrative		monstrative)		
				К	С	Α	Α	S	E	
	TOPICS			Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation	
1.0 DC Electrical Circuits		3.6%	12							
	Resistive Network	0.6	2			1	1			
PO-a. Apply knowledge of mathematics	Mesh and Node Equations	0.9	3			1	2			
and science to solve complex engineering	Network Theorems	0.9	3	1	1	1				
problems	Transient Analysis	0.3	1				1			
	Solution to DC Network Problems	0.9	3			1	2			
2.0 AC Electrical Circuits		3.6%	12							
	Solution to AC Network Problems	0.9	3			1	1	1		
PO-2. Apply knowledge of mathematics	Impedance and Admittance	0.6	2			1	1			
and science to solve complex engineering	Resonance	0.6	2			1	1			
problems	Power in AC Circuits	0.6	2			1	1			
	Two-Port Network Parameters and									
	Transfer Function	0.9	3			1	1	1		
3.0 Electromagnetics	(shared w/ MATH)	2.4%	8							
PO-a. Apply knowledge of mathematics and science to solve complex engineering problems	c/o MATH									
	Steady Electric and Magnetic Fields	0.6	2		2					
PO-e Identify formulate and solve	Dielectric and Magnetic Materials	0.6	2		2					
complex engineering problems	Coupled and Magnetic Circuits	0.6	2			2				
	Time-Varying Fields and Maxwell's Equation	0.6	2			2				
4.0 Electronic Devices and Circuits		4.2%	14							

PO-a. Apply knowledge of mathematics	Diode Wave Shaping Circuits and Special								
and science to solve complex engineering	Diode Applications	0.9	3		2	1			
problems	BJT and FET Small Signal Analysis	1.2	4			2	1	1	
	Diode Equivalent Circuits	0.3	1	1					
PO-e. Identify, formulate, and solve	Voltage Multipliers, Power Supply, and								
complex engineering problems	Voltage Regulation	0.6	2		2				
	Bipolar Junction Transistor and FET	1.2	4	2	2				
5.0 Electronic Circuit Analysis and Design		4.2%	14						
	BJT and FET Frequency Response	1.2	4	1	1	1	1		
PO a Identify formulate and colve	Cascade and Cascode Connections	0.6	2		1	1			
complex engineering problems	Current Mirrors and Current Source	0.3	1		1				
complex engineering problems	Differential and Operational Amplifier	0.6	2		1	1			
	Feedback Systems, Oscillators, and Filters	1.5	5		1	2	1	1	
6.0 Electronic Systems and Design	(shared w/ EST)	2.4%	8						
	SCR's, UJT, PUT, TRIAC, DIAC, and other								
	Thyristors	0.6	2		1	1			
PO-e. Identify, formulate, and solve	Optoelectronic Devices and Sensors	0.3	1		1				
complex engineering problems	Transducers, Data Acquisition, and								
	Interfacing Techniques	0.3	1		1				
	Programmable Logic Controllers	0.3	1	1					
PO-c. Design a system to meet desired needs within the realistic constraints	Design and Integration in Building Management Systems and HVAC Controls, Security, Safety, and Surveillance Control Systems, and Audio-Video and Lighting Controls	0.9	3			1	1	1	
7.0 Logic Circuits and Switching Theory		3.6%	12						
PO-e Identify formulate and solve	Boolean Algebra and Logic Gates	0.9	3			2	1		
complex engineering problems	Minimization of Combinational Logic								
	Circuits	1.2	4			2	1	1	

	Sequential Logic Circuits	0.9	3			1	1	1	
	Algorithmic State Machine (ASM)	0.3	1			1			
	Asynchronous Sequential Logic	0.3	1		1				
8.0 Microprocessor & Microcontroller									
Systems and Design		3.6%	12						
	Microprocessor Unit	0.9	3			2	1		
	Memory Subsystem	0.6	2	1		1			
PO-e. Identify, formulate, and solve	I/O Subsystem	0.6	2	1		1			
complex engineering problems	Instruction Set Architecture and Assembly								
	Programming	0.6	2	1		1			
	Microcontrollers	0.9	3	1		1		1	
9.0 Feedback and Control Systems	(shared w/ MATH)	2.4%	8						
	Block Diagram Representation and Signal								
	Flow Graphs	0.3	1			1			
	LTI Systems and Transient Analysis	0.3	1			1			
PO-e. Identify, formulate, and solve	System Modeling and Transfer Function	0.6	2			1	1		
complex engineering problems	Poles and Zeros, Root Locus, and Stability								
	Analysis	0.6	2			1	1		
	Steady State Analysis and Frequency								
	Response	0.6	2			1	1		
TOTAL		30%	100	10	20	40	22	8	0

Scope:
1.0 DC Electrical Circuits
Resistive Network
Mesh and Node Equations
Network Theorems

Transient Analysis
Solution to DC Network Problems
2.0 AC Electrical Circuits
Solution to AC Network Problems
Impedance and Admittance
Resonance
Power in AC Circuits
Two-Port Network Parameters and Transfer Function
3.0 Electromagnetics
Steady Electric and Magnetic Fields
Dielectric and Magnetic Materials
Coupled and Magnetic Circuits
Time-Varying Fields and Maxwell's Equation
4.0 Electronic Devices and Circuits
Diode Wave Shaping Circuits and Special Diode Applications
BJT and FET Small Signal Analysis
Diode Equivalent Circuits
Voltage Multipliers, Power Supply, and Voltage Regulation
Bipolar Junction Transistor and FET
5.0 Electronic Circuit Analysis and Design
BJT and FET Frequency Response
Cascade and Cascode Connections
Current Mirrors and Current Source
Differential and Operational Amplifier
Feedback Systems, Oscillators, and Filters

6.0 Electronic Systems and Design
SCR's, UJT, PUT, TRIAC, DIAC, and other Thyristors
Optoelectronic Devices and Sensors
Transducers, Data Acquisition, and Interfacing Techniques
Programmable Logic Controllers
Design and Integration in Building Management Systems and
HVAC Controls,
Security, Safety, and Surveillance Control Systems, and Audio-
Video and Lighting Controls
7.0 Logic Circuits and Switching Theory
Boolean Algebra and Logic Gates
Minimization of Combinational Logic Circuits
Sequential Logic Circuits
Algorithmic State Machine (ASM)
Asynchronous Sequential Logic
8.0 Microprocessor and Microcontroller Systems and Design
Microprocessor Unit
Memory Subsystem
I/O Subsystem
Instruction Set Architecture and Assembly Programming
Microcontrollers
9.0 Feedback and Control Systems
Block Diagram Representation and Signal Flow Graphs
LTI Systems and Transient Analysis
System Modeling and Transfer Function
Poles and Zeros, Root Locus, and Stability Analysis
Steady State Analysis and Frequency Response

Board Subject: ELECTRONICS SYSTEMS AND TECHNOLOGIES			No. Of Items	Level of Difficulty						
СОМР	ETENCY	30%	100	Easy (In	troductory)	Moderate (Enabling)	Difficult (Demonstrative)			
Course / Subject	TOPICS			К	С	Α	Α	S	E	
	Torics			Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation	
1.0 Signals, Spectra, Signal Processing		1%	10							
	1. Classification and Characteristics of signals	0.6	2	1	1					
	2. Sampling theorem and Aliasing	0.6	2			1	1			
[PO-A] Apply knowledge of mathematics	3. Difference equations for FIR and IIR	0.0					-			
and science to solve complex engineering	filters	0.9	3		1	2				
	4. Convolution and correlation, Z									
	transforms Filtering FiR/IIR	٨٩	3		1	1	1			
2.0 Principles of Communications		7 5%	25				-			
	1 Introduction to Communications	7.570	23							
	Systems	1.2	4	1	1	2				
	2. Noise	1.5	5			3	2			
[PO-A] Apply knowledge of mathematics	3. Amplitude Modulation, Single-Sideband									
and science to solve complex engineering	Techniques, Frequency Modulation	1.8	6			4	2			
problems.	4. Radio Receivers	0.9	3		1	1	1			
	5. Pulse Modulation, Digital Modulation,									
	Broadband Communication System	2.1	7	1	2	2	2			
3.0 Digital Communications		4.5%	15							
[PO A] Apply knowledge of methometics	1. Introduction to Digital Communications									
and science to solve complex engineering	Systems	0.6	2	1	1					
nrohlems	2. Digital Transmission, PAM, PWM, PPM,									
	Pulse Code Modulation	0.9	3			2	1			

	3. Digital Communications, ASK, FSK, PSK,							
	QAM	1.2	4		1	2	1	
	4. Basics of Information Theory, Error							
	Detection	0.6	2			1	1	
	5. FDM, TDM, WDM, FDMA, CDMA, TDMA	1.2	4		1	2	1	
4.0 Transmission and Antenna Systems		6.9%	23					
	1. Transmission Lines Circuits, losses and							
	parameters, Matching TL, Smith Chart	1.5	5	1	1	2	1	
[PO-A] Apply knowledge of mathematics	2. Radio Wave Propagation, Power Density							
and science to solve complex engineering	and Field Strength Calculations,	2.4	8		1	5	2	
problems.	3. Antenna Systems	1.8	6		2	2	2	
	4. Wave guides, Fiber Optics	1.2	4			2	2	
5.0 Electronics 3: Electronic Systems and								
Design		2.1%	7					
	1. Optoelectronic Devices and Sensors,							
	Transducers	0.6	2		1		1	
	2. Interfacing techniques, Programmable							
[PO-A] Apply knowledge of mathematics	Logic Controllers	0.6	2		1		1	
and science to solve complex engineering	3. Building Management Systems including							
problems.	HVAC Controls, Security and Surveillance							
	Control System, Audio-Video and Lighting							
	Controls, Supervisory Controls and Data							
	Acquisition, Fire and Life Safety Controls	0.9	3		1	1	1	
6.0 Data Communications		6%	20					
	1. Introduction to Data Communications,							
[PO-A] Apply knowledge of mathematics	Category of Data Communication,							
and science to solve complex engineering	Configurations and Network Topology	1.5	5	1	1	2	1	
problems.	2. Transmission Modes, Two-wire vs. Four-							
	Wire Circuits,	1.2	4		2		2	

TABLE OF SPECIFICATIONS

	3. Types of Synchronization, Network							
	Components (Terminal, multiplexer,							
	concentrators), Network Components							
	(LCU, FEP, Serial Interface), Security,							
	Cryptography	0.9	3	1	1	1		
	4. Open System Interconnection, System							
	Network Architecture, TCP/IP Architecture,							
	Character-Oriented Protocols, Bit-Oriented							
	Protocols	1.5	5	1	1	1	2	
	5. LAN/MAN/WAN/GAN, ISDN/B-ISDN	0.9	3			1	2	
TOTAL		30%	100		30	40		30

Scope:

1.0 Signals, Spectra, Signal ProcessingClassification and Characteristics of signalsSampling theorem and AliasingDifference equations for FIR and IIR filtersConvolution and correlationZ transformsPole-zero-gain filtersFourier transformsFilteringFiR/IIR2.0 Principles of CommunicationsIntroduction to Communications SystemsNoise, Amplitude ModulationSingle-Sideband Techniques

Frequency Modulation
Radio Receivers
Radiation and Propagation of Waves
Pulse Modulation
Digital Modulation
Broadband Communication System
3.0 Digital Communications
Introduction to Digital Communications Systems
Digital Transmission
PAM, PWM, PPM, Pulse Code Modulation
Digital Communications
ASK, FSK, PSK, QAM
Basics of Information Theory
Error Detection
FDM, TDM, WDM, FDMA, CDMA, TDMA
4.0 Transmission and Antenna Systems
Transmission Lines Circuits
Losses and parameters
Matching TL
5
Smith Chart
Radio Wave Propagation
Power Density and Field Strength Calculations
Antenna Systems

Wave guides
Fiber Optics
5.0 Electronics 3: Electronic Systems and Design
SCRs, UJT, PUT, TRIAC, DIAC, and other Thyristors
Optoelectronic Devices and Sensors
Transducers
Interfacing techniques
Programmable Logic Controllers
Building Management Systems including HVAC Controls,
Security and Surveillance Control System, Audio-Video and
Lighting Controls, Supervisory Controls and Data Acquisition,
Fire and Life Safety Controls
6.0 Data Communications
Introduction to Data Communications
Category of Data Communication
Configurations and Network Topology
Transmission Modes
Two-wire vs. Four-Wire Circuits
Types of Synchronization
Network Components (Terminal, multiplexer, concentrators)
Network Components (LCU, FEP, Serial Interface)
Security, Cryptography
Open System Interconnection
System Network Architecture
TCP/IP Architecture
Character-Oriented Protocols
Bit-Oriented Protocols

TABLE OF SPECIFICATIONS

LAN/MAN/WAN/GAN, ISDN/B-ISDN

7.0 CAD (Transferred to GEAS)

Introduction to CAD Software and its environment

Snapping and construction elements

Dimensioning, Plotting and inputting of images